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Investigations of shock waves are well known in gases [19], in elastic media [?) and
many others. These investigations pertain to the case where it is possible to obtain di-
rectly a closed system of equations at the discontinuities., For the majoriz of rheologi~
cal media it is impossible to write directly the determining equations at the discontinu-
ities, This situation arises because it is necessary on the shock wave to know the chara-
cter of change of some discontinuous quantity f in its dependence on another disconti-
nuous quantity ®. In this work it is proposed to find the dependence f(¢) from the ana-
lysis of the shock mansition,

1. Let us assume that the surface of discontinuity can be replaced by a thin wansition
layer of thickness 2k, Let us use zy to denote the Cartesian coordinate which has a dir-
ection normal to some mean surface £ which is located within the wansition layer,

Let the surface Z coincide with the surface of a strong discontinuity such that the trans-
idon layer reduces to this surface for A — 0,

Smooth changes in the transition layer before the "discontinuous” quantities on the
shock waves cannot be found from the solution of the problem of the structure of the
shock wave in the medium under study. After solution of this problem the dependence
of "discontinuous” quantities on the coordinate z, will be found in the form

1= f(x), P =9 (z5) (1.1)

Functions f and ¢ in(1,1) may depend on time ¢ and three spatial coordinates
z;, where 7, and z, will play the part of parameters. Eliminating z, from the first
relationship in (1, 1) with the aid of the second relationship, we find the desired relat-

ionship f (@) which is valid inside the shock layer,

The structure of the transition layer depends on the unknown velocity of propagatien
of the shock wave G. In this manner we arrive at the necessity of simultaneous solution of
of two problems: the problem of the structure of the shock wave and the problem of the
propagation of the shock wave in the given continuous medium, The structure of the
shock layer may be described through dissipation processes of viscosity. If the coeffi-
cients of viscosity are allowed to approach zero, the thickness of the transition layer

2k also tends to zero, In the limit the smooth variation of values transforms into a
discontinuous one, while the relationship f (@) tends to some limiting expression of its
own,

The complex problem of structure and LEropagation of the shock wave may turn out
to be very difficult. In connection with this an approximate method for the solution of
the problem is proposed.

The relationship f (p) is presented in the form of a sum

ot
1@ =+ U1+ v @ (1.2

The plus sign above quantities in (1.2) designates that this quantity is calculated on
the forward shock front, The square brackets designate the discontinuity. If the relat-

ionship (1.2) in the space of variables (f, ¢) is approximated by a straight line which
asses through two points (f*, @*) and (f~, ¢™), then the term ¢ in (1.2) should be neg-
ected,
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it follows from (1.2) that
v =¥ (@) =0, Y =¢@)=0 1.3)

In relationships (1.2) we shall subsequently neglect quantities ¥, which satisfy con-
ditions (1,3), Such an approximation is valid for shock waves of small intensity, when
points {f*, *) and (f~, ¢~)in the space{f, §) are located close to one another.

Let the flow outside the transition layer of the elasto-plastic medium be described by
a system of determining equations of Prandti-Reuss [3]
with the plasticity condition of Mises [4]. The exis-
tence of the transition layer is caused by the appear-
ance of additional properties of the medium within the
shock layer, The rheological model of the elasto-
plastic medium within the transition layer is repre-
sented in Fig. 1., Additional properties of the
medium are determined by the structure of element

Fig. 1 D. Usually this element will be the element of vis-
cosity [%¢].

The plasticigl conditions of Mises and the determining equations for such a medium
are written in the form

(645* — d4®) (045 — dyj) = 2k* (1.4)

PR d : d
“I“)“E‘H = M6+ 1 {”m‘ + v5,4— 2 d—? (6;* — d‘,-')} (1.5)

Here o0y is the swess tensor in the medium; d,; is the stress tensor in the rheologi~
cal element D; #; is the velocity of material particles; k is the limit of fluidity; &
and p are Lame elasticity constants, The asterisk above the tensor indicates the devi-
ator part of these tensors, D /Dt is the covariant derivative with respect to time in the
sense of Jaumann [7]

j doy; 1
—gps{—tl = "?T’ + 5 o (Vi — vja) + ';— Sjk (Uit — ¥4.4)
(1.6)

It is assumed that the dissipative properties of the medium which are described by the
rheological element D are apparent only within the transition layer. Approaching the
forward or rear shock front these properties gradually disappear so that the following
equations may be assumed to be valid:

du*'ﬂ du-= 0 (1.7)

Let us introduce a moving system of rectilinear coordinates such that its origin moves
together with the surface ®, At an arbitrary mass point under examination on the surface

2 let us orient the axis z; along the normal to this surface, then the axes z, and z,
will be located in the tangential plane. Let the Greek indices @, B.... assume the val-

ues 1 or 2, and the Latin indices ¢, J, k,... the values 1, 2 or 3. All quantities will be
calculated in the stationary system of coordinates and will be projected on the axes of
the moving system,

In (1.5) it is necessary to separate derivatives with respect to the normal to the sur-
face of discontinuity from derivatives with respect to the tangential directions, The
material derivative with respect to time is replaced by a 8-derivative, For this the
following relationships are required:

a a a

2 & )
5 =% 05, T 0 W= G 1.8
- ¢
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Let us write the dynamic conditions for discontinuities of density p, velocity and
stresses

[o1a] = p* (0" — G) [u], p(n—6)1=0 (1.9)
In order to obtain a closed system of eleven equations with respect to jumps of quan-

tities P, @, ¥ and oy, we shall integrate the determining equations (1. 5) across the
wansition layer, After this we find in the limit A —» 0

oy;* vt
‘ 1
S (v —G)d (oy—dy) + 5 S {810 —844) 855 + (8)4 — dya) ;3 —
o4 . v~
— O — fa) 653 - (Gja — dja) 6“} dv, =
ot
=X [1’!' 6” + (1] [0‘61-3 + l)ja“} — 2“ S (Qut — d“c) (D; — G)d@ “10)
-

According to (1.2), (1.3) and (1.7) it is appro;riate to neﬁk:ct the quantities dy;
in (1, 10) in the present approximation in view of their smallness in comparison to other
terms. Taking advantage of this situation and the linear approximation for the depen-
dence between discontinuity quantties (1.2), after integration, Eq. (1.10) will have
the form
s ("'* + '.‘) —Gj [cgj] + {(G“* + 6“') 6;. + (°j¢+ + 6’-;) 613 - ("u+ + (’“-) 6}«« -
- (058* + Gjta) 6“} [va]l= A fvs] Gu +p (”gajs -+ ”16”] -
— B {oy** (va* — G) +oy*" (v~ — G} @] (1.4

The flastici condition (1.4) which is written for discontinuities taking into consider-
ation (1. 7), will be written in the form

(04;** +6;*7) [oy] =0 (1.12)

The s¥stem of eleven nonlinear equations (1.9), (1.11) and (1, 12) contains eleven
jumps of quantities P, @, ¥, 03y and the unknown velocity @, In order t find ¢ by
simple wansformations, we shall reduce this system to three equations which contain

from discontinuities only the jumps in velocity v,.
In (1,11) we equate subscripts { and ; and sum with respect to the repeating subs-

cript, and then we obtain
foanl = 2 BA + 2p) (0] (" + vy~ — 26)7 (1.13)
After multiplication of (1, 11) by (oy** 4 ¢;;*7) and utilizing here (1, 4) and (1,12),
we arrive at the equation
0u** + 05*7) (vl = 28 (5" + o~ — 26) [9] (1.14)
If it is assumed in (1.11) that ¢ =gq and j =P, we shall have
[Ya (23" + ©87) — G} [0,g] — Y4 (Oag”, + Ga57) [75] — Ve (%ps* +8gy7) [Pa] = (1.15)
=2 [rs]8,p — P {Gap®" (" — 2G +v97) — (1™ — G) [0,5) + s (v9” — G) [0;4] 85} [¥]
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For j= 3 we find from (1.11)

1
[l/’ (”'+ + ”“) - Gl [5‘3] '+' T{ala* + c(a_ + (asa.’ + czu') 6!3 - (6“’ + Ga-) bla}[vu.] ==
=M v} 5‘3 +p [vg + 036‘3] e {6‘3.' (vs* — G) + 313‘- (v~ — G @] (1.16)

From equations (1. 13) - (1.15) it is consequently possible to express jumps [oy,l, (9]
and [9,g] through jumps [v], in this connection making use of relationship (1.9).
Substituting these jumps into (1. 16), we shall obtain a system of three nonlinear equa-
tions with respect to jumps {v;] and velocity G. Assuming one of these jumps as given,

after elimination of two other velocity jumps from three equations we shall obtain an
equation with respect to G, From the obtained equation in & it is appropriate to find
the velocities of particles of the medium with an accuracy to the first power of the giv~
en jump. This follows from the linear approximation in (1.2). Without writing out this
system we note that for shock waves of very small intensity, if it can be linearized, it
will assume the form

{P+ {ns* —G)* 5(,' - (3‘ +n) 6;3633 - p’c” + % 6i3.+6j8’+ +
1
+ 5 (a;—aydyy )} [v;1=0, a,, =0;"+ 083" —on*d, {1.17)

The terms 4;, take into account the effect of rotation of the surroundings of the
material point of the medium, Equating the determinant of the homogenous linear sys-
tem of equations (1, 17) to zero, we obtain a cubic equation for finding p* (G — 1*)3,
For the case of an irrotational wave we find from (1.17)

{2
PG —ntp =t 2 —p (2 ) (1.18)

If the shock wave is equivoluminous, we shall obain from (1.17) for the particular
case when [1] =0

PT(G— n*)=p —p (03" ] k) * + Yy (0" — 0y*) (1.19)

In the general case when [#])=£0, only positive roots among the solutions of the cu-~
bic equations have a significance,

‘The second law of thermodynamics [#] places a limit on the propagation of shock
waves. According to this law the power energy dissipation as a result of plastic flow
cannot be negative, i.e. [4]

E>o0 (1.20)

In order to write inequality (1, 20) at the discontinuities, we shall integrate it across
the wransition layer, The sign of inequality does not change in this connection, because
the upper limit of integration A is greater than the lower limit —A. In the limit for
h -+ 0 we shall have

A ot
de
i S —e g S —_ = f—
fim) = ) (= Od = —0)le)>0

max (5%, %*) > u* > min (5", ny") (1.21)
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From the law of conservation of mass on the surface of the discontinuity (1. 9) it
follows that (G — 1"} and (G — wy7), comequently also (G — vy') have the same
signs, In connection with this we obtain from (1. 14) and (1.21)

(@is* + 0;3) 1) >0 (1.22)

In this manner the propagation of the shock wave in an elasto-plastic medium is
possible from the thermodynamic point of view if the inequality (1.28) is satisfied on
the surface of the discontinuity,

2, In addition to the general case of propagation of the shock wave which was exam-
ined, it is also of interest in the elasto-plastic medium to examine the particular case
when on the surface of the discontinuity

log*l1 =0, 3 [0g] = lopal (2.1)

In this case it is easy to find the velocity @¢. Solving simultaneously (2.1), (1.13)
and Eq. (1.9) for ¢ = 3, we obtain

G— vy == (o] + {(A-+2p13)p"}h (2.2)

The assumption (2. 1) places a limit on the propagation of the shock wave with velo-
city (2.2). For a shock wave of very small intensity this limit has the form

4k — 30,470,400 0; =130,,0,0,, [v,] = 0w, (2.3)

This equation is obtained by multiplying (1.17) t?r w; with utilization of (2,2). Here
w is the intensity of the shock wave, w; are the directional cosines of the vector [v4].
Neglecting terms ay,, we shall write (2. 3) in the invariant form in the stationary system

of coordinates

204;°% o*" = 3 (64;* 'viw;)? (2.4)

where v are the direction cosines of the normals to the surface of the discontinuity.
We shall write the expression (2.4) in a system of coordinates which coincides with
the principal directions of the tensor oy,

20, %10 *t == 3 {01 Viwn | 5% Pyt - G Pvawg)t 2.5)

Here O are the principal values of the swess tensor, We shall find the extremum ¢
of the right side of this equation as a function of directions of vectors vy and w,

2 = & *tvi0 -+ Gy * V.00 + da‘*‘\’y(ﬂs. WV = 0y == 1 (26)

In the space of variables (%, ¥y, @;) the surface (2. 6) will be closed and smooth,
therefore the greater exmemum gives a maximum for 2. The calculationswill be omit-
ted, but after examination of the maximum for # we find that a solution of Eq. (2.5)

with respect to v, and w, is possible only in the case when two out of three principal

values Oy coincide, and vectors ¥y and ®y coincide with the third principal direction.
Changing again to the moving system of coordinates this result will have the form

Op* = On® = —Y,05* = 1 1/ V3%, O = 0Oy =053,=0, [p]J=0 (2.7)
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The last equation in (2. 7) says that the examined shock wave will be irrotational,
Conditions (2.7) can be satisfied in the region of one-dimensional flow, when the state
of stress on the surface of the discontinuities has spherical symmetry. For the jumps of
the plastic part of deformation [ePyy] we find from (1.11), (1.14) and (2. 7) the expres-
sion

[enP) = [es?) = — th(en?) = T e leow?) =[ewP] =[ew?] =0 @8)

The second law of thermodynamics in the form (1.22) is tramsformed into the inequa-
lity
Oy* [] >0 (2.9)

The approximate method offered in this paper allows to write the determining equat-
ions for an elasto-plastic medium with an accuracy to the squares of discontinuity quan-
tities, From the obtained system of equations it is possible to determine the velocity of
propagation of the shock wave with an accuracy to the first power of the jump of the gi-
ven quantity. For a more accurate solution of the problem of shock wave propagation
it is necessary first to solve the problem of the structure of this wave. It is possible to
show by direct calculations that shock waves of very small intensity and waves of weak
discontinuity have the same properties with the exception of inequality (1,22), For weak
waves of discontinuity it does not apgl?v. .

A similar approach can be utilized for the solution of the problem of propagation of
shock waves in other complex media,
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