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Investigations of shock waves are well known in gases [*J], in elastic media 1’1 and 
man 
ret tly 

others. These investigations pertain to the case where it is possible to obtain di- 
y a closed system of equations at the discontinuities. For the majori 

cal media it is impossible to write directly the determining equations at s 
of rheologi- 

e dlscontinu- 
ities. This situation arises because it is necessary on the shock wave to know the chara- 
cter of change of some discontinuous quantity f in its de endence on another dlsconti- 
nuous quantity Cp. In this work it is proposed to find the ependence f (9) from the ana- % 
lysis of the shock transition. 

f. Let us assume that the surface of discontinuity can be replaced by a thin transition 
layer of thickness W. Let us use z, to denote the Cartesian coordinate which has a dir- 
ection normal to some mean surface Z which is located within the transition layer. 
Let the surface Z coincide with the surface of a strong discontinuity such that the trans- 
ition layer reduces to this surface for h -, 0. 

Smooth changes in the transition layer before the “discontinuous” quantities on the 
shock waves cannot be found from the solution of the problem of the structure of the 
shock wave in the medium under study. After solution of this problem the dependence 
of “discontinuous” quantities on me coordinate zs will be found in the form 

Functions f and cp in (1.1) may depend on time t and three spatial coordinates 
zi, where zl and zr will play the part of parameters. Eliminating =a from the first 

relationship in (1.1) with the aid of the second relationship, we find the desired relat- 
ionship f ((p) which is valid inside the shock layer. 

The suucture of the transition layer depends on the unknown velocity of propagation 
of the shock wave C. In this manner we arrive at the necessity of simultaneous solution of 
of two problems: the problem of the structure of the shock wave and the problem of the 
propagation of the shock wave in the given conti.nuous medium. The structure of the 
shock la er may be described through dissipation processes of viscosity. If the coeffi- 
cients o Y. viscosity are allowed to approach zero. the thickness of the transition layer 

U also tends to zero. In the limit the smooth variation of values transforms into a 
discontinuous one, while the relationship f (cp) tends to some limiting expression of its 
own. 

The corn lex problem of structure and 
to be very rfficult. In connection with c! r& 

ropagation of the shock wave may turn out 
is an approximate method for the solution of 

the problem is proposed. 
The relationship f ((p) is presented in the form of a sum 

The plus sign above quantities in (1.2) desi nates that this quantity is calculated on 
the forward shock front. The square brackets estgnate the discontinuity. If the relat- fi . 
ionship (1.2) in the space of variables (f, (p) is approximated by a straight line which 

P 
asses through two points (I’, v+) and (f, cp-), then the term 9 in (1.2) should be neg- 
ected. 
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It follows from (1.2) that 

q+ -_ 9 (9’) = 0, ql- = l)l (qr) = 0 (1.3) 

In relationships (1.2) we shall su~~uen~y neglect quantities ‘Ip, which satisfy con- 
ditions (1.3). Such an approximation is valid for shock waves of small intensity, when 
points (r, 0’) and (p, cp-) in the space (/, V) are located close to one another. 

Let the flow outside the transition layer of the e&to-plastic medium be described by 
a system of determining equations of Prandtl-Reuss 18) 

m 

with the plasticity condition of Mises i41. The exis- 
tence of the transition layer is caused b the appear- 
ance of additional properties of the me ium within the 

:E~~dl~r?r~g. 1. Additional proper tie! of the 

The rheologrcal model of the elasto- 
plastic medium within the transition layer is repre- 

Fig. 1 
medium are determined by the structure of element 
D. Usually this element will be the element of vis- 

The plastici 
cosity IL~‘l. 

conditions of Mises and the determining equations for such a medium 
are written in 9 e form 

(or,* - d*j') (qj-d*j) = 2k* 0 4 

(1.3 

Here ail is the stress tensor in the medium; dtl is the stress tensor in the rheologi- 
cal element L); Vt is the velocity of material particles; k is rile limit of fluidity; t 
and p are Lame elasticity constants. The asterisk above the tensor indicates the devi- 
ator part of rhese tensors, .D /Di is the covariant derivative with respect to time in the 
sense of Jaumann I’] 

- = 7 + + qk (vk,j - Uj-A) -6 f ojk tUk,i - VLA) 
% dOij 
Dt 

(‘**I 

It is assumed that the dissipative properties of the medium which are described by the 
rheolo 
forwar 9 

ical element D are apparent only within the transition layer. Approaching the 
or rear shock front these properties gradually disappear so that the following 

equations may be assumed to be valid: 

a,,+ - a,,- = 0 0.7) 

Let us introduce a moving s 
together with the surface 2, x 

stem of rectilinear coordinates such that its origin moves 
t an arbitrary mass point under examination on the surface 

L: let us orient the axis 2s along the normal to this surface, then the axes z1 and Z, 
will be located in the tangential plane. Let the Greek indices a, fl,...‘assume the val- 
ues 1 or 2, and the Latin indices 1, j, k ,... the values 1, 2 or 3. All quantities will be 
calculated in the stationary system of coordinates and will be projected on the axes of 
the moving system. 

In (1.5) it is necessary to separate derivatives with respect to the normal to the sur- 
face of discontinuity from derivatives with respect to the tangential directions. The 
material derivative with respect to time is replaced by a d-derivative. For this the 
following relationships are required: 

(i.8) 
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Let us write the dynamic conditions for discontinuitiea of density p, velocity and 
stresses 

loo1 = P’ (u*+ - C) IU{l, fp (p, - G)l = 0 (1.9) 

In order to obtain a closed system of eleven equations with respect to jumps of quan- 
tities fI, QI, r+ and ai,, we shall integrate the determining equations (1.5) across the 
transition layer. After this we find in the limit tr --P 0 

According to (1.2). (1.3) and (1. ‘7) it is 
in (1.10) in the present approximation 
terms. Taking advantage of this situation 
$;c;rb$ween discontinuity quantities 

The lastici condition (1.4) which is written for discontinuities taking into consider- 
ation ( .7), wi 1 be written in the form P r 

(Qj*+ + atj*-) i%jl =O (i.i2) 

The s 
jumps o i 

stem of eleven nonlinear equations (1.9), (1.11) and (1.12) contains eleven 
quantities P, 9, uf, oft and the unknown velocity 0. In order to find C by 

simple aansformatiom. we shall reduce this system to three equations which contain 
from discontinuides only the jumps in veloci 

In (1.11) we equate subscripts f and i an 7 
vd. 

sum with respect to the repeating subs- 
cript, and then we obtain 

After multiplication of (1.11) by (uff+ + aI,*-) and utilizing here (1.4) and (1.12). 
we arrive at the equation 

If it is assumed in (1.11) that 1 = a and / c= fl, we shall have 

1% @r+ + us-) - ‘Jl I%B1 - ‘14 (a, J’. + a,J-) [‘Bl - ‘/a (bkq+ +$J-) IQ1 = (1.15) 

= X [ -lIJ,, - )r (eJ+ (a+ - 2C + VJ-) - (vJ- - G) lQ1+ l/J (vJ- - G) @,,I hxel 101 
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For J’ = 3 we find from (1.11) 

From equations (1.13) - (1.15) it is consequently possible to express jumps ]u~~], ]q] 
and ]e,a] through jumps [q], in this connection making use of relationship (1.9). 
Substituting these jumps into (1.16). we shall obtain a system of three nonlinear equa- 
tions with respect to jumps ]u~] and velocity G. Assuming one of these jumps as given, 
after elimination of two other velocity jumps from three equations we shall obtain an 
equation with respect to G. From the obtained equation in G it is appropriate to find 
the velocities of particle4 of the medium with an accuracy to the first power of the giv- 
en jump. This follows from the linear approximation in (1.2). Without writing out this 
system we note that for shock waves of very small intensity, if it can be linearized, it 
will assume the form 

(1.17) 

The terms alo take into account the effect of rotation of the surroundings of the 
material point of the medium. Equating the determinant of the homogenous linear sys- 
tem of equations (1.17) to zero, we obtain a cubic equation for finding p+ (G - b+)a, 
For the case of an irrotational wave we find from (1.17) 

p+ (G - ori’)’ -X+qA-r(+) (4 ,i8) 

If the shock wave is equivoluminous, we shall obtain from (1.1’7) for the particular 
case when [u,] = 0 

p+ (G - I++)’ = p - p (%a’ / k) ’ + ‘1, (ass+ - au+) (i.i9) 

In the general case when [r+)#O, only positive roots among the solutions of the cu- 
bic equations have a significance. 

The second law of thermodynamics 1’1 places a limit on the propagation of shock 
waves. According to this law the power energy dissipation as a result of plastic flow 
cannot be negative, i.e. [a] 

$0 

In order to write Inequality (1.20) at the discontinuities, we shall Integrate it across 
the transition layer, The sign of inequality does not change in this connection, because 
the upper limit of integration h is greater than the lower limit --h. In the limit for 
L -, 9 we shall have 

(i.21) 



From the law of conservation of mass on the surface of the discontinuity (1.9) it 
follows that (G - y”) and (G - vs-), consequently also (G - r$) have the same 
signs. In connection with this we obtain from (1.14) and (1.21) 

(1.22) 

In this marmer the propagation of rhe shock wave in an elasto-plastic medium is 
possible from the ~ermodynami~ point of view if the in~uali~ (1.22) is satisfied on 
the surface of the discontinuity. 

2, In addition to the general case of 
ined, it is also of interest in the elasto-p P 

ropagation of the shock wave which was exam- 
astic 

when on the surface of the discontinuity 
medium to examine the particular case 

i5as*1 = 0, 3 I%,$1 = f5fJ (2-f) 

In this case it is easy to find the velocity G. Solving simultaneously (2. I), (1.13) 
and Eq. (1.9) for i = 3, we obtain 

The assumption (2.1) places a limit on the propagation of the shock wave with velo- 
city (2.2). For a shock wave of very small intensity this limit has the form 

(2.3) 

This equation is obtained by multiplying (1. I?) b o 
o is the intensity of the shock wave, 01 are the 

J i. with utilization of (2.2). Here 
uectional cosines of the vector Iut]. 

Neglecting terms Use,. 
of coordinates 

we shall write (2.3) in the invariant form in the stationary system 

&j’+ a$j++ = 3 (d{j’+V(Oj)’ (2.4) 

where ~1 are the direction cosines of the normals to the surface of the d~~ontinui~, 
We shall write the expression (2.4) in a system of coordinates which coincides with 

the principal directions of the tensor aIf 

b k k *+a +* 21 3 @r,*+vio; + r&*+vtor $- ua*+v&’ (2.5) 

Here a& are the rincipai values of the stress tensor. We shall find the extremum E 
of the right side of #I* is equation as a function of directions of vet tars VI and reB 

2 = ul*+vlwI + ar+*v*w2 + upv~wa, VAv& = (ul,wk = i cw 
In the space of variables (0, vkP 0~1 the surface (2.6) will be closed and smooth, 

therefore the greater extremum gives a maximum for 9. The calculationswill be omit- 
ted, but after examination of the maximum for s we find that a solution of Eq. (2.5) 
with respect to vii and ok is possible only in the case when two out of three principal 
values o‘& coincide, and vectors Yr, and @k coincide with the third rincipal direction. 

Changing again to the moving system of coordinates this result will K ave the form 
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The last equation in (2.7) says that the examined shock wave will be irrotational. 
Conditions (2.7) can be satisfied in the region of one-dimensional flow, when the state 
of stress on the surface of the disco,ntlnnities has spherical symmetry. For the jumps of 
the plastic part of deformation &I we find from (1. ll), f 1.14) and (2.7) the expres- 
sion 

[crin] = [es+‘) = - ‘/, (C#J = [val 
3 (C -vt)r’) ’ [e91= [@I = [epPI =0 

The second law of thermodynamics in the form (1.22) is transformed into the 
lity 

%8* (‘$I> 0 

ilKXpi.l- 

(2.Q) 

The approximate method offered in this paper allows to write the determining equat- 
ions for an elasto- 

E 
lastlc 

tities. From the o 
medium with an accuracy to the squares of discontinurty quan- 

tained system of equations it is possible to determine the velocity of 
propagation of the shock wave with an accuracy to the first power of the jump of the gi- 
ven quantity. For a more accurate solution of the problem of shock wave propa ation 
it is necessary first to solve the problem of the structure of this wave. It is posse % le to 
show by direct calculations that shock waves of very small intensity and waves of weak 
d~continui~ have the same properties with the exception of inequality (1.22). For weak 
waves of discontinuity it does not ap 1 

A similar approach can be utilize Bry. 
shock waves in other complex media. 

or the solution of the problem of propagation of 
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